
1

ACL support for the Spring Security plugin.

Table of contents

2

Spring Security ACL - Reference Documentation
Authors: Burt Beckwith

Version: 1.1.1

Table of Contents

1 Introduction

1.1 History

2 Usage

2.1 Securing Service Methods

2.2 Working with ACLs

2.3 Domain Classes

2.4 Configuration

2.5 Run-As Authentication Replacement

2.6 Custom Permissions

3 Tutorial

4 Sample Application

3

1 Introduction
The ACL plugin adds Domain Object Security support to a Grails application that uses Spring Security. It
depends on the .Spring Security Core plugin

The core plugin and other extension plugins support restricting access to URLs via rules that include checking a
user's authentication status, roles, etc. and the ACL plugin extends this by adding support for restricting access
to individual domain class instances. The access can be very fine-grained and can define which actions can be
taken on an object - these typically include Read, Create, Write, Delete, and Administer but you're free to define
whatever actions you like.

To learn about using ACLs in Grails, you can follow and in addition you can download and run athis tutorial
complete Grails application that uses the plugin. Installing and running the application are described .here

In addition to this document, you should read the Spring Security documentation .here

1.1 History

History

August 20, 2012

1.1.1 release

February 16, 2011

1.1 release

February 7, 2011

1.0.2 release

August 1, 2010

1.0.1 release

July 27, 2010

1.0 release

May 22, 2010

initial 0.1 release

Authors

Burt Beckwith

Previous work

Stephan February did the adding ACL support to the plugin. At the time the plugin was basedfirst work Acegi
on Acegi 1.0.x and around the same time the plugin was converted to use Spring Security 2.0 and the ACL
support wasn't converted to use the new package layout and approach.

http://grails.org/plugin/spring-security-core
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/domain-acls.html
http://blog.bruary.net/2008/04/grails-acegi-acl-howto.html
http://grails.org/plugin/acegi/

4

Work was done in 2009 to create a GORM-based implementation (the standard Spring Security implementation
uses JDBC). Around the same time, Phillip Merensky that he was workingmentioned on the Grails mailing list
on an implementation. He wrote about his approach and this was merged in with the other approach buthere
never formally released.

This plugin builds on that work but is based on Spring Security 3 and Spring 3.

http://grails.1312388.n4.nabble.com/Acegi-Plugin-0-5-1-with-ACL-support-implemented-td1400650.html
http://imagesiteproject.wordpress.com/2009/09/24/integration-of-spring-security-into-grails-plugin-approach-3/

5

2 Usage

2.1 Securing Service Methods
There are two primary use cases for ACL security: determining whether a user is allowed to perform an action
on an instance before the action is invoked, and restricting access to single or multiple instances after methods
are invoked (this is typically implemented by collection filtering). You can call

 explicitly, but this tends to clutter your code with security logicaclUtilService.hasPermission()
that often has little to do with business logic. Instead, Spring Security provides some convenient annotations that
are used to wrap your method calls in access checks.

There are four annotations:

@PreAuthorize

@PreFilter

@PostAuthorize

@PostFilter

The annotations use security-specific Spring expression language (SpEL) expressions - see the documentation
for the available standard and method expressions.

Here's an example service that manages a domain class and uses these annotations and expressions:Report

http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/access/prepost/PreAuthorize.html
http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/access/prepost/PreFilter.html
http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/access/prepost/PostAuthorize.html
http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/access/prepost/PostFilter.html
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/el-access.html

6

import org.springframework.security.access.prepost.PostFilter
 org.springframework.security.access.prepost.PreAuthorizeimport
 org.springframework.transaction.annotation.Transactionalimport

 com.yourapp.Reportimport

class ReportService {

 transactional = static false

@PreAuthorize(+"hasPermission(#id, 'com.yourapp.Report', read) or "
)"hasPermission(#id, 'com.yourapp.Report', admin)"
 Report getReport(id) {long
 Report.get(id)
 }

@Transactional
 @PreAuthorize()"hasRole('ROLE_USER')"
 Report createReport(params) {
 Report report = Report(params)new
 report.save()
 report
 }

@PreAuthorize()"hasRole('ROLE_USER')"
 @PostFilter(+"hasPermission(filterObject, read) or "
)"hasPermission(filterObject, admin)"
 List getAllReports(params = [:]) {
 Report.list(params)
 }

@Secured(['ROLE_USER', 'ROLE_ADMIN'])
 getReportName(id) {String long
 Report.get(id).name
 }

@Transactional
 @PreAuthorize(+"hasPermission(#report, write) or "
)"hasPermission(#report, admin)"
 Report updateReport(Report report, params) {
 report.properties = params
 report.save()
 report
 }

@Transactional
 @PreAuthorize(+"hasPermission(#report, delete) or "
)"hasPermission(#report, admin)"
 void deleteReport(Report report) {
 report.delete()
 }
}

The configuration specifies these rules:

7

getReport requires that the authenticated user have or BasePermission.READ
 for the instanceBasePermission.ADMIN

createReport requires ROLE_USER

getAllReports requires and will have elements removed from the returned thatROLE_USER List
the user doesn't have an ACL grant for; the user must have or BasePermission.READ

 for each element in the list; elements that don't have access granted will beBasePermission.ADMIN
removed

getReportName requires that the authenticated user have either or (but noROLE_USER ROLE_ADMIN
ACL rules)

updateReport has no role restrictions but must satisfy the requirements of the
 voter (which has the config attribute), i.e. aclReportWriteVoter ACL_REPORT_WRITE

 or BasePermission.ADMINISTRATION BasePermission.WRITE

deleteReport has no role restrictions but must satisfy the requirements of the
 voter (which has the config attribute), i.e. aclReportDeleteVoter ACL_REPORT_DELETE

 or BasePermission.ADMINISTRATION BasePermission.DELETE

2.2 Working with ACLs

Suggested application changes

To properly display access denied exceptions (e.g. when a user tries to perform an action but doesn't have a
grant authorizing it), you should create a mapping in forgrails-app/conf/UrlMappings.groovy
error code 403. In addition, it's possible to trigger a which will create an error 500, butNotFoundException
should be treated like a 403 error, so you should add mappings for these conditions:

import org.springframework.security.access.AccessDeniedException
 org.springframework.security.acls.model.NotFoundExceptionimport

class UrlMappings {

 mappings = {static
 {"/$controller/$action?/$id?"
 constraints {}
 }

(view:)"/" "/index"

(controller: , action:)"403" "errors" "error403"
 (controller: , action:)"500" "errors" "error500"
 (controller: , action: ,"500" "errors" "error403"
 exception: AccessDeniedException)
 (controller: , action: ,"500" "errors" "error403"
 exception: NotFoundException)
 }
}

These depend on an :ErrorsController

http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/acls/model/NotFoundException.html

8

package com.yourcompany.yourapp

 grails.plugins.springsecurity.Securedimport

@Secured(['permitAll'])
class ErrorsController {

def error403 = {}

def error500 = {
 render view: '/error'
 }
}

and a similar to this:grails-app/views/errors/error403.gsp

<html>
<head>
<title>Access denied!</title>
<meta name='layout' content='main' />
</head>

<body>
<h1>Access Denied</h1>
<p>We're sorry, but you are not authorized to
 perform the requested operation.</p>
</body>
</html>

actionSubmit

Grails has a convenient feature where it supports multiple submit actions per form via the
 tag. This is done by posting to the action but with a special parameter that<g:actionSubmit> index

indicates which action to invoke. This is a problem in general for security since any URL rules for edit, delete,
save, etc. will be bypassed. It's an even more significant issue with ACLs because of the way that the access
denied exception interacts with the processing. If you don't make any adjustments for this,actionSubmit
your users will see a blank page when they attempt to submit a form and the action is disallowed. The solution is
to remove buttons and replace them with regular submit buttons. This requires one form peractionSubmit
button, and without adjusting the CSS the buttons will look differently than if they were in-line

 buttons, but that is fixable with the appropriate CSS changes.actionSubmit

It's simple to adjust the buttons and you'll need to change them in and actionSubmit show.gsp
; and don't need any changes. In , replace the two actionSubmitedit.gsp list.gsp show.gsp show.gsp

buttons with these two forms (maintain the g:message tags; the strings are hard-coded here to reduce clutter):

9

<div class= >"buttons"
 <g:form action='edit'>
 <g:hiddenField name= value= />"id" "${reportInstance?.id}"
 "button"
 <g:submitButton class= name= />"edit" "Edit"

 </g:form>
 <g:form action='delete'>
 <g:hiddenField name= value= />"id" "${reportInstance?.id}"
 "button"
 <g:submitButton class= name="delete" "Delete"
 onclick= />" confirm('Are you sure?');"return

 </g:form>
</div>

In , change the tag toedit.gsp <form>

<g:form action='update'>

and convert the update button to a regular submit button:

<div class= >"buttons"
 "button"
 <g:submitButton class= name= />"save" "Update"

</div>

and move the delete button out of the form into its own form just below the main form:

<g:form action='delete'>
 <g:hiddenField name= value= />"id" "${reportInstance?.id}"
 <div class= >"buttons"
 "button"
 <g:submitButton class= name="delete" "Delete"
 onclick= />" confirm('Are you sure?');"return

 </div>
</g:form>

2.3 Domain Classes
The plugin uses domain classes to manage database state. Ordinarily the database structure isn't all that
important, but to be compatible with the traditional JDBC-based Spring Security code, the domain classes are
configured to generate the table and column names that are used there.

The plugin classes related to persistence use these classes, so they're included in the plugin but can be
overridden by running the script.s2-create-acl-domains

As you can see, the database structure is highly normalized.

AclClass

10

The domain class contains entries for the names of each application domain class that hasAclClass
associated permissions:

class AclClass {

 classNameString

@Override
 toString() {String
 "AclClass id $id, className $className"
 }

 mapping = {static
 className column: 'class'
 version false
 }

 constraints = {static
 className unique: true
 }
}

AclSid

The domain class contains entries for the names of grant recipients (a principal or authority - SID is anAclSid
acronym for "security identity"). These are typically usernames (where is) but can also be a principal true

 (role name, where is). When granting permissions to a role, anyGrantedAuthority principal false
user with that role receives that permission:

class AclSid {

 sidString
 principalboolean

@Override
 toString() {String
 "AclSid id $id, sid $sid, principal $principal"
 }

 mapping = {static
 version false
 }

 constraints = {static
 principal unique: 'sid'
 }
}

AclObjectIdentity

The domain class contains entries representing individual domain class instancesAclObjectIdentity
(OIDs). It has a field for the instance id () and domain class () that uniquely identify theobjectId aclClass
instance. In addition there are optional nullable fields for the parent OID () and owner ().parent owner
There's also a flag () to indicate whether ACL entries can inherit from a parent ACL.entriesInheriting

11

class AclObjectIdentity AbstractAclObjectIdentity {extends

 objectIdLong

@Override
 toString() {String
 +"AclObjectIdentity id $id, aclClass $aclClass.className, "
 "objectId $objectId, entriesInheriting $entriesInheriting"
 }

 mapping = {static
 version false
 aclClass column: 'object_id_class'
 owner column: 'owner_sid'
 parent column: 'parent_object'
 objectId column: 'object_id_identity'
 }

 constraints = {static
 objectId unique: 'aclClass'
 }
}

 actually extends a base class, :AclObjectIdentity AbstractAclObjectIdentity

abstract class AbstractAclObjectIdentity {

AclClass aclClass
 AclObjectIdentity parent
 AclSid owner
 entriesInheritingboolean

 constraints = {static
 parent nullable: true
 owner nullable: true
 }
}

By default it's assumed that domain classes have a numeric primary key, but that's not required. So the default
implementation has a field, but if you want to support other types of ids you can change thatLong objectId
field and retain the other standard functionality from the base class.

AclEntry

Finally, the domain class contains entries representing grants (or denials) of a permission on anAclEntry
object instance to a recipient. The field references the domain class instance (since anaclObjectIdentity
instance can have many granted permissions). The field references the recipient. The fieldsid granting
determines whether the entry grants the permission () or denies it (). The fieldtrue false aceOrder
specifies the position of the entry, which is important because the entries are evaluated in order and the first
matching entry determines whether access is allowed. and determineauditSuccess auditFailure
whether to log success and/or failure events (these both default to).false

12

The field holds the permission. This can be a source of confusion because the name (and the Springmask
Security documentation) indicates that it's a bit mask. A value of 1 indicates permission A, a value of 2 indicates
permission B, a value of 4 indicates permission C, a value of 8 indicates permission D, etc. So you would think
that a value of 5 would indicate a grant of both permission A and C. Unfortunately this is not the case. There is a

 class that supports this, but the standard classes don't support it (CumulativePermission
 checks for == rather than using | (bitwise or) so a combined entry would neverAclImpl.isGranted()

match). So rather than grouping all permissions for one recipient on one instances into a bit mask, you must
create individual records for each. This will be addressed in Spring Security 3.1 however.

class AclEntry {

AclObjectIdentity aclObjectIdentity
 aceOrderint
 AclSid sid
 maskint
 grantingboolean
 auditSuccessboolean
 auditFailureboolean

@Override
 toString() {String
 +"AclEntry id $id, aceOrder $aceOrder, mask $mask, "
 "granting $granting, aclObjectIdentity $aclObjectIdentity"
 }

 mapping = {static
 version false
 sid column: 'sid'
 aclObjectIdentity column: 'acl_object_identity'
 }

 constraints = {static
 aceOrder unique: 'aclObjectIdentity'
 }
}

2.4 Configuration
Creating, editing, or deleting permissions requires an authenticated user. In most cases if the authenticated user
is the owner of the ACL then access is allowed, but granted roles also affect whether access is allowed. The
default required role is for all actions, but this can be configured in ROLE_ADMIN

. This table summarizes the attribute names and the correspondinggrails-app/conf/Config.groovy
actions that are allowed for it:

Attribute Affected methods

grails.plugins.springsecurity.
acl.authority.
modifyAuditingDetails

AuditableAcl.updateAuditing()

grails.plugins.springsecurity.
acl.authority.changeOwnership

OwnershipAcl.setOwner()

grails.plugins.springsecurity.
acl.authority.
changeAclDetails

MutableAcl.deleteAce() ,
, MutableAcl.insertAce()

, MutableAcl.setEntriesInheriting()
, MutableAcl.setParent()

MutableAcl.updateAce()

You can leave the attributes set to or change them to have separate values, e.g.ROLE_ADMIN

http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/acls/domain/CumulativePermission.html

13

grails.plugins.springsecurity.acl.authority.
 modifyAuditingDetails = 'ROLE_ACL_MODIFY_AUDITING'

grails.plugins.springsecurity.acl.authority.
 changeOwnership = 'ROLE_ACL_CHANGE_OWNERSHIP'

grails.plugins.springsecurity.acl.authority.
 changeAclDetails = 'ROLE_ACL_CHANGE_DETAILS'

Run-As Authentication Replacement

There are also two options to configure :Run-As Authentication Replacement

Attribute Meaning

grails.plugins.springsecurity.
useRunAs

change to to enable; defaults to true false

grails.plugins.springsecurity.
runAs.key

a shared key between the two standard implementation classes,
used to verify that a third party hasn't created a token for the
user; should be changed from its default value

Example:

grails.plugins.springsecurity.useRunAs = true
grails.plugins.springsecurity.runAs.key = 'your run-as key'

2.5 Run-As Authentication Replacement
Although not strictly related to ACLs, the plugin implements since it'sRun-As Authentication Replacement
related to method security in general. This feature is similar to the Switch User feature of the Spring Security
Core plugin, but instead of running as another user until you choose to revert to your original

, the temporary authentication switch only lasts for one method invocation.Authentication

For example, in this service requires that the authenticated user have and willsomeMethod() ROLE_ADMIN
also be granted for the duration of the method only:ROLE_RUN_AS_SUPERUSER

class SecureService {

@Secured(['ROLE_ADMIN', 'RUN_AS_SUPERUSER'])
 def someMethod() {
 …
 }
}

2.6 Custom Permissions
By defaul t there are 5 permiss ions avai lable f rom the

 class: , , org.springframework.security.acls.domain.BasePermission READ WRITE
, , and . You can also add your own permissions if these aren't sufficient.CREATE DELETE ADMINISTRATION

http://static.springsource.org/spring-security/site/docs/3.0.x/reference/runas.html
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/runas.html

14

T h e e a s i e s t a p p r o a c h i s t o c r e a t e a s u b c l a s s o f
 and add your neworg.springframework.security.acls.domain.BasePermission

permissions there. This way you retain the default permissions and can use them if you need. For example,
here's a subclass that adds a new permission:APPROVE

package com.mycompany.myapp;

 org.springframework.security.acls.domain.BasePermission;import
 org.springframework.security.acls.model.Permission;import

 class MyPermission BasePermission {public extends

 Permission APPROVE = MyPermission(1 << 5, 'V');public static final new

 MyPermission(mask) {protected int
 (mask);super
 }

 MyPermission(mask, code) {protected int char
 (mask, code);super
 }
}

It sets the mask value to 32 (1 << 5) since the values up to 16 are defined in the base class.

To use your class instead of the default, specify it in with the
 attribute either as a Class or a String,grails.plugins.springsecurity.acl.permissionClass

for example

import com.mycompany.myapp.MyPermissions
…
grails.plugins.springsecurity.acl.permissionClass = MyPermissions

or

grails.plugins.springsecurity.acl.permissionClass =
'com.mycompany.myapp.MyPermissions'

You can also override the bean in aclPermissionFactory
, keeping the grails-app/conf/spring/resources.groovy

 class butorg.springframework.security.acls.domain.DefaultPermissionFactory
passing your class as the constructor argument to keep it from defaulting to , or do a moreBasePermission
complex override to more fully reconfigure the behavior:

import org.springframework.security.acls.domain.DefaultPermissionFactory
 com.mycompany.myapp.MyPermissionimport

beans = {
 aclPermissionFactory(DefaultPermissionFactory, MyPermission)
}

Once this is done you can use the permission like any other, specifying its quoted lowercase name in an
expression, e.g.

15

@PreAuthorize()"hasPermission(#id, 'com.testacl.Report', 'approve')"
Report get(id) {long
 Report.get id
}

16

3 Tutorial
First create a test application:

$ grails create-app acltest
$ cd acltest

Install the plugin:

$ grails install-plugin spring-security-acl

This will install the plugin, so you'll need to configure that by running the Spring Security Core
 script:s2-quickstart

$ grails s2-quickstart com.testacl User Role

The ACL support uses domain classes but to allow customizing the domain classes (e.g. to enable Hibernate
2nd-level caching) there's a script that copies the domain classes into your application,

. This script is run when the plugin is installed (otherwise the plugin codes2-create-acl-domains
wouldn't compile) but you can run it again to re-create the domain classes:

$ grails s2-create-acl-domains

Note that you cannot change the domain class names or packages since they're used by the plugin. The domain
class mappings are configured to generate the same DDL as is required by the standard Spring Security JDBC
implementation for portability.

We'll need a domain class to test with, so create a domain class:Report

$ grails create-domain-class com.testacl.Report

and add a property for testing:name

package com.testacl

class Report {
 nameString
}

Next we'll create a service to test ACLs:

$ grails create-service com.testacl.Report

http://grails.org/plugin/spring-security-core

17

and add some methods that work with s:Report

package com.testacl

 org.springframework.security.access.prepost.PostFilterimport
 org.springframework.security.access.prepost.PreAuthorizeimport
 org.springframework.security.acls.domain.BasePermissionimport
 org.springframework.security.acls.model.Permissionimport
 org.springframework.transaction.annotation.Transactionalimport

class ReportService {

 transactional = static false

def aclPermissionFactory
 def aclService
 def aclUtilService
 def springSecurityService

void addPermission(Report report, username, permission) {String int
 addPermission report, username,
 aclPermissionFactory.buildFromMask(permission)
 }

@PreAuthorize()"hasPermission(#report, admin)"
 @Transactional
 void addPermission(Report report, username,String
 Permission permission) {
 aclUtilService.addPermission report, username, permission
 }

@Transactional
 @PreAuthorize()"hasRole('ROLE_USER')"
 Report create(name) {String
 Report report = Report(name: name)new
 report.save()

// Grant the current principal administrative permission
 addPermission report, springSecurityService.authentication.name,
 BasePermission.ADMINISTRATION

report
 }

@PreAuthorize(+"hasPermission(#id, 'com.testacl.Report', read) or "
)"hasPermission(#id, 'com.testacl.Report', admin)"
 Report get(id) {long
 Report.get id
 }

@PreAuthorize()"hasRole('ROLE_USER')"
 @PostFilter(+"hasPermission(filterObject, read) or "
)"hasPermission(filterObject, admin)"
 List<Report> list(Map params) {
 Report.list params
 }

 count() {int
 Report.count()
 }

@Transactional
 @PreAuthorize(+"hasPermission(#report, write) or "
)"hasPermission(#report, admin)"
 void update(Report report, name) {String
 report.name = name
 }

@Transactional
 @PreAuthorize(+"hasPermission(#report, delete) or "
)"hasPermission(#report, admin)"
 void delete(Report report) {
 report.delete()

18

// Delete the ACL information as well
 aclUtilService.deleteAcl report
 }

@Transactional
 @PreAuthorize()"hasPermission(#report, admin)"
 void deletePermission(Report report, username, Permission permission) {String
 def acl = aclUtilService.readAcl(report)

// Remove all permissions associated with particularthis
 // recipient (string equality to KISS)
 acl.entries.eachWithIndex { entry, i ->
 (entry.sid.equals(recipient) &&if
 entry.permission.equals(permission)) {
 acl.deleteAce i
 }
 }

aclService.updateAcl acl
 }
}

The configuration specifies these rules:

addPermission requires that the authenticated user have admin permission on the report instance to
grant a permission to someone else

create requires that the authenticated user have ROLE_USER

get requires that the authenticated user have read or admin permission on the specified Report

list requires that the authenticated user have ROLE_USER and read or admin permission on each
returned Report; instances that don't have granted permissions will be removed from the returned List

count has no restrictions

update requires that the authenticated user have write or admin permission on the report instance to edit
it

delete requires that the authenticated user have delete or admin permission on the report instance to edit
it

deletePermission requires that the authenticated user have admin permission on the report instance
to delete a grant

To test this out we'll need some users; create those and their grants in BootStrap.groovy:

import com.testacl.Report
 com.testacl.Roleimport
 com.testacl.Userimport
 com.testacl.UserRoleimport

 import static
org.springframework.security.acls.domain.BasePermission.ADMINISTRATION

 org.springframework.security.acls.domain.BasePermission.DELETEimport static
 org.springframework.security.acls.domain.BasePermission.READimport static
 org.springframework.security.acls.domain.BasePermission.WRITEimport static

 org.springframework.security.authentication.import
UsernamePasswordAuthenticationToken

 org.springframework.security.core.authority.AuthorityUtilsimport
 org.springframework.security.core.context.SecurityContextHolder as SCHimport

class BootStrap {

19

def aclService
 def aclUtilService
 def objectIdentityRetrievalStrategy
 def sessionFactory
 def springSecurityService

def init = { servletContext ->
 createUsers()
 loginAsAdmin()
 grantPermissions()
 sessionFactory.currentSession.flush()

// logout
 SCH.clearContext()
 }

 void loginAsAdmin() {private
 // have to be authenticated as an admin to create ACLs
 SCH.context.authentication = UsernamePasswordAuthenticationToken(new
 'admin', 'admin123',
 AuthorityUtils.createAuthorityList('ROLE_ADMIN'))
 }

 void createUsers() {private
 def roleAdmin = Role(authority: 'ROLE_ADMIN').save()new
 def roleUser = Role(authority: 'ROLE_USER').save()new

3.times {
 id = it + 1long
 def user = User(username: , enabled: ,new "user$id" true
 password: springSecurityService.encodePassword()).save()"password$id"
 UserRole.create user, roleUser
 }

def admin = User(username: 'admin', enabled: ,new true
 password: springSecurityService.encodePassword('admin123')).save()

UserRole.create admin, roleUser
 UserRole.create admin, roleAdmin, true
 }

 void grantPermissions() {private
 def reports = []
 100.times {
 id = it + 1long
 def report = Report(name:).save()new "report$id"
 reports << report
 aclService.createAcl(
 objectIdentityRetrievalStrategy.getObjectIdentity(report))
 }

// grant user 1 admin on 11,12 and read on 1-67
 aclUtilService.addPermission reports[10], 'user1', ADMINISTRATION
 aclUtilService.addPermission reports[11], 'user1', ADMINISTRATION
 67.times {
 aclUtilService.addPermission reports[it], 'user1', READ
 }

// grant user 2 read on 1-5, write on 5
 5.times {
 aclUtilService.addPermission reports[it], 'user2', READ
 }
 aclUtilService.addPermission reports[4], 'user2', WRITE

// user 3 has no grants

// grant admin admin on all
 (report in reports) {for
 aclUtilService.addPermission report, 'admin', ADMINISTRATION
 }

// grant user 1 ownership on 1,2 to allow the user to grant
 aclUtilService.changeOwner reports[0], 'user1'
 aclUtilService.changeOwner reports[1], 'user1'
 }
}

20

And to have a UI to test with, let's create a controller and GSPs:Report

$ grails generate-all com.testacl.Report

But to use the controller, it will have to be reworked to use . It's a good idea to put allReportService
create/edit/delete code in a transactional service, but in this case we need to move all database access to the
service to ensure that appropriate access checks are made:

package com.testacl

 org.springframework.dao.DataIntegrityViolationExceptionimport
 org.springframework.security.acls.model.Permissionimport

 grails.plugins.springsecurity.Securedimport

@Secured(['ROLE_USER'])
class ReportController {

 defaultAction = 'list'static

def reportService

def list = {
 params.max = .min(params.max ? params. ('max') : 10, 100)Math int
 [reportInstanceList: reportService.list(params),
 reportInstanceTotal: reportService.count()]
 }

def create = {
 [reportInstance: Report(params)]new
 }

def save = {
 def report = reportService.create(params.name)
 (!renderWithErrors('create', report)) {if
 redirectShow , report.id"Report $report.id created"
 }
 }

def show = {
 def report = findInstance()
 (!report) if return

[reportInstance: report]
 }

def edit = {
 def report = findInstance()
 (!report) if return

[reportInstance: report]
 }

def update = {
 def report = findInstance()
 (!report) if return

reportService.update report, params.name
 (!renderWithErrors('edit', report)) {if
 redirectShow , report.id"Report $report.id updated"
 }
 }

def delete = {
 def report = findInstance()
 (!report) if return

21

 {try
 reportService.delete report
 flash.message = "Report $params.id deleted"
 redirect action: list
 }
 (DataIntegrityViolationException e) {catch
 redirectShow , params.id"Report $params.id could not be deleted"
 }
 }

def grant = {

def report = findInstance()
 (!report) if return

 (!request.post) {if
 [reportInstance: report]return
 }

reportService.addPermission(report, params.recipient,
 params. ('permission'))int

redirectShow +"Permission $params.permission granted on Report $report.id "
 , report.id"to $params.recipient"
 }

 Report findInstance() {private
 def report = reportService.get(params. ('id'))long
 (!report) {if
 flash.message = "Report not found with id $params.id"
 redirect action: list
 }
 report
 }

 void redirectShow(message, id) {private
 flash.message = message
 redirect action: show, id: id
 }

 renderWithErrors(view, Report report) {private boolean String
 (report.hasErrors()) {if
 render view: view, model: [reportInstance: report]
 return true
 }
 false
 }
}

Note that the controller is annotated to require either or . Since services haveROLE_USER ROLE_ADMIN
nothing to do with HTTP, when access is blocked you cannot be redirected to the login page as when you try to
access a URL that requires an authentication. So you need to configure URLs with similar role requirements to
give the user a chance to attempt a login before calling secured service methods.

Finally, we'll make a few adjustments so errors are handled gracefully.

First, edit and add some error code mappings:grails-app/conf/UrlMappings.groovy

22

import org.springframework.security.access.AccessDeniedException
 org.springframework.security.acls.model.NotFoundExceptionimport

class UrlMappings {

 mappings = {static
 {"/$controller/$action?/$id?"
 constraints {}
 }

(view:)"/" "/index"

(controller: , action:)"403" "errors" "error403"
 (controller: , action:)"404" "errors" "error404"
 (controller: , action:)"500" "errors" "error500"
 (controller: , action: ,"500" "errors" "error403"
 exception: AccessDeniedException)
 (controller: , action: ,"500" "errors" "error403"
 exception: NotFoundException)
 }
}

Then create the that these reference:ErrorsController

$ grails create-controller com.testacl.Errors

and add this code:

package com.testacl

 grails.plugins.springsecurity.Securedimport

@Secured(['permitAll'])
class ErrorsController {

def error403 = {}

def error404 = {}

def error500 = {
 render view: '/error'
 }
}

and create the GSPs:

Add this to :grails-app/views/errors/error403.gsp

<html>
<head>
<title>Access denied!</title>
<meta name='layout' content='main' />
</head>

<body>
<h1>Access Denied</h1>
<p>We're sorry, but you are not authorized
 to perform the requested operation.</p>
</body>
</html>

23

and this to :grails-app/views/errors/error404.gsp

<html>
<head>
<title>Not Found</title>
<meta name='layout' content='main' />
</head>

<body>
<h1>Not Found</h1>
<p>We're sorry, but that page doesn't exist.</p>
</body>
</html>

actionSubmit issues

Grails has a convenient feature where it supports multiple submit actions per form. This is done by posting to
the action but with a special parameter that indicates which action to invoke. This is a problem inindex
general for security since any URL rules for edit, delete, save, etc. will be bypassed. It's an even more
significant issue with ACLs because of the way that the access denied exception interacts with the

 processing. If you don't make any adjustments for this, your users will see a blank page whenactionSubmit
they attempt to submit a form and the action is disallowed. The solution is to remove buttonsactionSubmit
and replace them with regular submit buttons. This requires one form per button, and without adjusting the CSS
the buttons will look differently than if they were in-line buttons, but that is fixable with theactionSubmit
appropriate CSS changes.

It's simple to adjust the buttons; in , replaceactionSubmit grails-app/views/report/show.gsp
the two actionSubmit buttons with these two forms (maintain the g:message tags; the strings are hard-coded here
to reduce clutter):

<div class= >"buttons"
 <g:form action='edit'>
 <g:hiddenField name= value= />"id" "${reportInstance?.id}"
 "button"
 <g:submitButton class= name= />"edit" "Edit"

 </g:form>
 <g:form action='delete'>
 <g:hiddenField name= value= />"id" "${reportInstance?.id}"
 "button"
 <g:submitButton class= name="delete" "Delete"
 onclick= />" confirm('Are you sure?');"return

 </g:form>
</div>

In , change the tag tograils-app/views/report/edit.gsp <form>

<g:form action='update'>

and convert the update button to a regular submit button:

24

<div class= >"buttons"
 <g:submitButton class= name= />"button" "save" "Update"
</div>

and move the delete button out of the form into its own form just below the main form:

<g:form action='delete'>
 <g:hiddenField name= value= />"id" "${reportInstance?.id}"
 <div class= >"buttons"
 "button"
 <g:submitButton class= name="delete" "Delete"
 onclick= />" confirm('Are you sure?');"return

 </div>
</g:form>

 and are fine as they are.list.gsp show.gsp

Testing

Now start the app:

$ grails run-app

and open http://localhost:8080/acltest/report/list

Login as user1/password1 and you should see the first page of results. But if you click on page 7 or higher,
you'll see that you can only see a subset of the s. This illustrates one issue with using ACLs to restrictReport
view access to instances; you would have to add joins in your query to the ACL database tables to get an
accurate count of the total number of visible instances.

Click on any of the report instance links (e.g.) to verify that you canhttp://localhost:8080/acltest/report/show/63
view the instance. You can test that you have no view access to the filtered instances by navigating to

.http://localhost:8080/acltest/report/show/83

Verify that user1 has admin permission on report #11 by editing it and deleting it.

Verify that user1 doesn't have admin permission on report #13 by trying to editing or delete it and you should
see the error page when you submit the form.

Logout (by navigating to) and login as user2/password2. You should onlyhttp://localhost:8080/acltest/logout
see the first five reports. Verify that you can edit #5 but not any of the others, and that you can't delete any.

Finally. logout and login as admin/admin123. You should be able to view, edit, and delete all instances.

http://localhost:8080/acltest/report/list
http://localhost:8080/acltest/report/show/63
http://localhost:8080/acltest/report/show/83
http://localhost:8080/acltest/logout

25

4 Sample Application
Working with ACLs in Spring Security is complex but it will be easier to understand with a sample application.
To help get you started, there's a Grails application that uses the plugin to test with. It's based on the Contacts
application that comes with Spring Security. But where the Spring Security application uses SpringMVC,
JDBC, etc., this application is 100% Grails. Download it from .here

Unpack the zip file, for example in /opt/workspace/grails-contacts

Run the script to make sure it's compatible with the version of Grails you're using (note that all of theupgrade
Spring Security plugins require at least version 1.2.2 of Grails):

$ cd /opt/workspace/grails-contacts
$ grails upgrade

and start the app:

$ grails run-app

Open in a browser to get started. The main functionality is at http://localhost:8080/grails-contacts/
. The login page lists the various configured users and theirhttp://localhost:8080/grails-contacts/secure

passwords; the "rod" user is an admin and has full access and the other users have various grants and ownership.

http://static.springsource.org/spring-security/site/start-here.html
http://github.com/grails-plugins/grails-spring-security-acl/raw/master/grails-contacts.zip
http://localhost:8080/grails-contacts/
http://localhost:8080/grails-contacts/secure

