Spring Security Ul Plugin

Reference Documentation

Spring Security UI Plugin - Reference
Documentation

Burt Beckwith

Version 3.0.0.M2

Table of Contents

1. Introduction to the Spring Security ULPIUZIN. 1
1.1 Release HiStOTY . ..ottt et 1
2.User ManageIMeIItottt ittt ittt ettt e ittt ittt it 3
2. 1. USer SearChl .. oo e 3
2.2, 08T BAIL . . oottt e 4
2.3, USEr CreatiONl . . oottt ettt e 6
3. ROle MANAZEIMEIIL . ..ottt ettt ettt ettt et ettt e 7
3L Role SearCh. ..o 7
3.2 R0IE @It ... 7
3.3.ROIE Creationottt 8
4. Requestmap Managementttt ittt it it et i e 9
4.1. Requestmap Search e 9
4.2. Requestmap €dit.ttt e 9
4.3. Requestmap Creationuuuuuitt ittt i 10
5. USer RegiStrationttt e 11
5.1 REZISIIATION .« ..ottt e 11
5.2. CONfigUIatiONutt e 12
5.3. Mail configurationt e 13
S N O S Lt e e 13
5.5. RegistrationCode SearCht e 14
5.6. RegistrationCode edit it e 15
6. FOTrgOt PASSWOIA.ttt et 16
6.1. FOrgOt PASSWOIottt i 16
6.2. CONFIGUIAtIONttt e ettt 18
6.3. Mail configurationoo i e 18
0.4, NO S . oottt e 18
7. ACL ManaGeIMeINt. . . oo oottt ettt ittt et e it 20
7.1. AcIClass ManaGeIMeIItot vttt ettt ettt ettt ettt ettt 20
7.2. ACISIA MANAGeIMENIT. . ..ottt et 21
7.3. AclObjectIdentity Managementuuuunitt ittt 23
7.4. ACIENIry Managemenlttt ettt 25
8. Persistent Cookie Managementttt ittt 28
8.1. Persistent logins search i e 28
8.2. Persistentlogins edit e 29
8.3. Persistent 10gINs Creation.ttt e 29
9. Security Configuration UL e 30
9.1. Security Configurationt et 30

0.2 VAP PIIIES .« v vttt ettt ettt 30

9.3. Current AUthentiCatiON. . o . vttt et e e e e e e e 31

0.4, USEr CaChe . . oottt 31
9.5, FIlter Chainsttt ittt e e et e e e e e 32
9.6. LOgOUt HaNAIers oottt ettt e e e 33
0.7 VO TS .ttt e e 33
9.8. Authentication ProVIAerS.ttt et e et et 33
9.9. Secure Channel Definitionttt i i e 34
10. CUSTOIMUIZATION. .+« v v ettt et ettt et e et e e et e e e et e e e e e e e e e 35
10.1. S2UI-0VEITIAE SCIIPt . o ot vttt ettt ettt e e e e e e e e e e et 35
10,2, T8N ettt ettt e e e e e 37
10.3. application.groovy attributesttt e 37
10.4. CSS and JavaSCriPt . . oo vttt ettt ettt e e e 38
10.5. Password Hashingottt e e e e 40
10.6. Password VerifiCation.ouu ittt et e e i 41
I 1 0] PP 43

I T 0 7= (o (< 43

Chapter 1. Introduction to the Spring
Security UI Plugin

The Spring Security UI plugin provides CRUD screens and other user management workflows. Non-
default functionality is available only if the feature is available; this includes the ACL controllers
and views which are enabled if the ACL plugin is installed, Requestmaps support which is available
if grails.plugin.springsecurity.securityConfigType is set to "Requestmap" or
SecurityConfigType.Requestmap in application.groovy, and persistent cookies support which is
enabled if it has been configured with the s2-create-persistent-token script.

To support both Grails 3.0.x and 3.1.x applications, the plugin depends on version
5.0.x of the hibernate4 plugin and the grails-data-mapping libraries. Because of
the way that dependency resolution works across Grails versions, you must add
explicit dependencies for the hibernate4 plugin and the GORM libraries to ensure
that everything is in sync. As of this writing the current release version of the
hibernate4 plugin is '5.0.4' and '5.0.4.RELEASE' for the grails-data-mapping
libraries. In addition to adding a dependency for this plugin, add these to the
dependencies block of your build.gradle:

compile 'org.grails.plugins:hibernate4:5.0.4'

0 compile 'org.grails:grails-datastore-core:5.0.4.RELEASE'
compile 'org.grails:grails-datastore-gorm-support:5.0.4.RELEASE'
compile 'org.grails:grails-datastore-gorm:5.0.4.RELEASE'
compile 'org.grails:grails-datastore-simple:5.0.4.RELEASE'
compile 'org.grails:grails-datastore-gorm-hibernate4:5.0.4.RELEASE'
compile 'org.grails:grails-datastore-gorm-hibernate-
core:5.0.4.RELEASE'

If you use MongoDB or another NoSQL datastore other than Hibernate, retain the
supporting dependencies but update the datastore-specific dependencies as
necessary.

Also be sure to update the versions when new releases are available.

1.1. Release History

* April 15, 2016
e 3.0.0.M2 release

¢ December 21, 2015
e 3.0.0.M1 release

e December 21, 2015
e 1.0-RC3 release

http://grails.org/plugin/spring-security-acl

May 20, 2014
e 1.0-RC2 release

e November 11, 2013
e 1.0-RC1 release
* JIRA Issues

February 12, 2012
e 0.2 release

* JIRA Issues

* September 14, 2010
e 0.1.2 release

* JIRA Issues

* July 27,2010

¢ 0.1.1 release

« July 26, 2010

e initial 0.1 release

http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10233&version=13069
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10233&version=12709
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10233&version=11921

Chapter 2. User Management

2.1. User search

The default action for the User controller is search. By default only the standard fields (username,
enabled, accountExpired, accountLocked, and passwordExpired) are available but this is customizable
with the s2ui-override script - see the Customization section for details.

You can search by any combination of fields, and the username field has an Ajax autocomplete to
assist in finding instances. In this screenshot you can see that an email field has been added to the
domain class and Ul Leave all fields empty and all checkboxes set at "Either" to return all
instances.

Spring Security Management Console Logged in as admin (Logout)

User Search

Username:

Email:
True Either

Enabled:

Account Expired:

Account Locked:

O0oo
00004
@

EE R R

Password Expired:

Search

This example shows a search for usernames containing 'adm’' (the search is case-insensitive and the
search string can appear anywhere in the username). Results are shown paginated in groups of 10.
All of the column headers are clickable and will sort the results by that field.

Users Roles Registration Code Security Info

Spring Security Management Console

Logged in as admin (Logout)

Username: [adm|]

Email: []
True False Either

Enabled: 0 (]]

Account Expired: [O)

Account Locked: [O)

Password Expired: [0O]

‘ Search ‘

farzadmirzaei farzadmirzaei@foo.com True False False False

chenreadme chenreadme@foo.com True False False False

sajjadmohebi sajjadmohebi@foo.com True False False False

padmawar padmawar@foo.com True False False False

ysunadmin ysunadmin@foo.com True False False False

1 [2][s][s][=][e][z] [e][=] [z0] [nex]

Showing 1 through 10 out of 100,

2.2. User edit

After clicking through to the 'admin' User you get to the edit page (there are no view pages):

_

Spring Security Management Console Logged in as admin (Logout)
Edit User
“ & User Details ‘ 2 Roles ‘
Usermame |Jadmin
Email [admin@foo.com
Password (eoee

Enabled

™
Account Expired [
Account Locked (]

]

Password Expired

Update Delete Login as user

You can update any of the attributes or delete the User. You can see that there’s a "Login as user"
button here - that is only shown if you’re authenticated with a User who is granted ROLE_SWITCH_USER
(this role name can be configured in application.groovy):

This allows you to temporarily assume the identity of another User (see the Spring Security Core
plugin documentation for more information about switch-user). The "Logged in as ..." information
in the top right of the screen will change to show that you’re running as another User and provide a
link to switch back. The role name ROLE_SWITCH_USER is the default but you can change the value
with the grails.plugin.springsecurity.ui.switchUserRoleName setting in application.groovy.

If you click the Roles tab you can see the roles granted to this User and can click through to its edit
page:

_

Spring Security Management Console Logged in as admin (Logout)

Edit User

‘ & User Details | & Roles ‘ ‘

™ ROLE_ADMIN
ROLE_SWITCH_USER
[ROLE_USER

Update Delete

https://grails-plugins.github.io/grails-spring-security-core/v3/index.html#switchUser
https://grails-plugins.github.io/grails-spring-security-core/v3/index.html#switchUser

2.3. User creation

You can create new Users by going to /user/create or by clicking the Create action in the Users
menu.

Users Roles Registration Code ecurity Into

Spring Security Management Console Logged in as admin (Logout)

Create User

£ User Details Roles J

Username

—
L—

Email

Password

Enabled

0
Account Expired [
Account Locked 0O

O

Password Expired

Create

Chapter 3. Role Management

3.1. Role search

The default action for the Role controller is search. By default only the authority field is available
but this is customizable with the s2ui-override script - see the Customization section for details.

The authority field has an Ajax autocomplete to assist in finding instances. Leave the field empty to
return all instances.

Spring Security Management Console Logged in as admin (Logout)

Role Search

authority: ||)

Search

Search is case-insensitive and the search string can appear anywhere in the name (and you can
omit the ROLE_ prefix). Results are shown paginated in groups of 10 but if there’s only one result
youw’ll be forwarded to the edit page for that Role. The authority column header is clickable and will
sort the results by that field.

3.2. Role edit

After clicking through to a Role you get to the edit page (there are no view pages):

Spring Security Management Console Logged in as admin (Logout)
Edit Role

< Role Details | g Users

Autherity [ROLE_ADMIN

Update Delete

You can update any of the attributes or delete the Role. Any user that had been granted the Role will
lose the grant but otherwise be unaffected.

If you click the Users tab you can see which users have a grant for this Role and can click through to

their edit page:

Users Roles Registration Code Security Info

Spring Security Management Console Logged in as admin (Logout)

Edit Role

(Anakoats [users |

admin

‘ Update H Delete ‘

3.3. Role creation

You can create new Roles by going to /role/create or by clicking the Create action in the Roles

menu.

Users Roles Registration Code Security Info

Spring Security Management Console Logged in as admin (Logout)

_

Authaority I]]

‘ Create ‘

Chapter 4. Requestmap Management

The default approach to securing URLs is with annotations, so the Requestmaps menu is only
shown if grails.plugin.springsecurity.securityConfigType has the value "Requestmap" or
SecurityConfigType.Requestmap in application.groovy.

4.1. Requestmap search

The default action for the Requestmap controller is search. By default only the standard fields (url
and configAttribute) are available but this is customizable with the s2ui-override script - see the
Customization section for details.

You can search by any combination of fields, and the url and configAttribute fields have an Ajax
autocomplete to assist in finding instances. Leave both fields empty to return all instances.

| |
Spring Security Management Console Logged in as admin (Logout)

Requestmap Search

URL: (i]

Config Attribute: (

Search

Searching is case-insensitive and the search string can appear anywhere in the field. Results are
shown paginated in groups of 10 and you can click on either header to sort by that field:

—

Spring Security Management Console Logged in as admin (Logout)

‘ Requestmap Search ‘

URL: (

Config Attribute: |'

Search

/i_spring_security_switch_user ROLE_SWITCH_USER,IS_AUTHENTICATED_FULLY
Jsecura/** ROLE_ADMIN

Showing 1 through 2 out of 2,

4.2. Requestmap edit

After clicking through to a Requestmap you get to the edit page (there are no view pages):

Spring Security Management Console

Logged in as admin (Logout)

Edit Requestmap

URL |'! j_spring_security_switch_user

Config Attribute |'ROLE_SWITCH_USER,IS_AUTHENTICATED_FULLY

Update Delete

You can update any of the attributes or delete the Requestmap. Editing or deleting a Requestmap
resets the cache of loaded instances, so your changes will take effect immediately.

4.3. Requestmap creation

You can create new Requestmaps by going to /requestmap/create or by clicking the Create action in

the Requestmaps menu.

Spring Security Management Console

Logged in as admin (Logout)

Create Requestmap

URL (i)

Config Attribute |

Create

Creating a Requestmap resets the cache of loaded instances, so your changes will take effect

immediately.

10

Chapter 5. User Registration

Most of the plugin’s controllers are intended to be part of a backend admin application, but the
Registration and Forgot Password workflows are expected to be user-facing. So they’re not
available in the admin menu like the User, Role, and other backend functionality - you’ll need to
expose them to your users.

One way to do this is to replace the default login.gsp that’s provided by the Spring Security Core
plugin with this plugin’s version. You can do this by running grails s2ui-override auth - s2ui-
override script - see the Customization section for details. If you do this your users will have links to
both workflows from the login screen:

Member sign in

Username: [I]

Fassword:

™ Remember me | Forgot password?

Reqgister as new User Log in

5.1. Registration

Navigate to /register/:

Create Account

lsername
E-mail
Password

Password (again)

Create your account

After filling out valid values an email will be sent and you’ll see a success screen:

11

Create Account

Your account registration email was sent - check your maill

Click on the link in the email:

u BacktoInbox | Archive FReport spam @ Delete Moveto v | Labels More actions

New Account 1nbox |
gsssssmgmail.com show details 10:18 PM (1 minute ago) | < Reply = ¥
Hitestuser,
You (or someone pretending to be you) created an account with this email address.

[fyou made the request, please click here to finish the registration.

Reply Forward

and you’ll finalize the process, which involves enabling the locked user and pre-authenticating,
then redirecting to the configured destination:

€2 GRAILS

@ Your registration is complete

Logaed in as testuser (Logout)

5.2. Configuration

The post-registration destination url is configurable in grails-app/conf/application.groovy using
the postRegisterUrl attribute:

12

grails.plugin.springsecurity.ui.register.postRegisterUrl = '/welcome'

If you don’t specify a value then the grails.plugin.springsecurity.successHandler.defaultTargetUrl
value will be used, which is '/' by default.

You can customize the subject, body, and from address of the registration email by overriding the
default values in grails-app/conf/application.groovy, for example:

grails.plugin.springsecurity.ui.register.emailBody
grails.plugin.springsecurity.ui.register.emailFrom
grails.plugin.springsecurity.ui.register.emailSubject =

The emailBody property should be a GString and will have the User domain class instance in scope
in the user variable, and the generated url to click to finalize the signup in the url variable.

In addition, each new user will be granted ROLE_USER after finalizing the registration. If you want to
change the default role, add more, or grant no roles at all (for example if you want an admin to
approve new users and explicitly enable new users) then you can customize that with the
defaultRoleNames attribute (which is a List of Strings):

[1 // no roles

grails.plugin.springsecurity.ui.register.defaultRoleNames

or

grails.plugin.springsecurity.ui.register.defaultRoleNames = ['ROLE_CUSTOMER']

5.3. Mail configuration

By default the plugin uses the Mail plugin to send emails, but only if it installed. This is configurable
by registering your own MailStrategy implementation - see [the section on
configuration | guide:customization] for more information. The plugin assumes that the Mail plugin
and an SMTP server are already configured.

5.4. Notes

You should consider the registration code as starter code - every signup workflow will be different,
and this should help you get going but is unlikely to be sufficient. You may wish to collect more
information than just username and email - first and last name for example. Run grails s2ui-
override register to copy the registration controller and GSPs into your application to be
customized.

If there are unexpected validation errors during registration (which can happen when there is a
disconnect between the domain classes and the code in RegisterController they will be logged at
the warn or error level, so enable logging to ensure that you see the messages, e.g.

13

http://grails.org/plugin/mail

logger 'grails.plugin.springsecurity.ui.SpringSecurityUiService', WARN

RegisterController and its GSPs assume that your User domain class has an email
field. Be sure to either rework the workflow (using the s2ui-override script) if you
don’t need an email confirmation step or add an email field.

5.5. RegistrationCode search

The plugin uses its grails.plugin.springsecurity.ui.RegistrationCode domain class to store a token
associated with the new users' username for use when finishing the registration process after the
user clicks the link in the generated email (and also as part of the forgot-password workflow). The
plugin includes a controller and GSPs to manage these instances.

The default action for the RegistrationCode controller is search. By default only the standard fields
(username and token) are available but this is customizable with the s2ui-override script - see the
Customization section for details.

You can search by any combination of fields, and both fields have an Ajax autocomplete to assist in
finding instances. Leave both fields empty to return all instances.

Users Roles Requestmaps Registration Code ACL Security Info |
Logged in as admin (Logout)

Spring Security Management Console

Registration Code Search

Username:

Token:

Search

Searching is case-insensitive and the search string can appear anywhere in the field. Results are
shown paginated in groups of 10 and you can click on any header to sort by that field:

14

Logged in as admin (Logout)

Spring Security Management Console

Registration Code Search

Username:

Token:

Search

eB8lble53648a47e6aef31a937154¢7ch registration_test_1 2015-12-19
4a7f8Bafec3746f7aab2f5d0d8dfed8e registration_test_1 2015-12-19
c7ac5f23be70495f93e4450a78a27cb4 registration_test_1 2015-12-19
a50e061e0e2f424fb7fbc2ff3dae597d registration_test_1 2015-12-19
d6938ad63c414a69a0da30a8c0619a60 registration_test_2 2015-12-19
4a589c642eald3abb2ecaea57falalcc registration_test 2 2015-12-19
0al54624f36d42e4aa68991a9477bd04 registration_test_2 2015-12-19
3842a6ae102a431cBed48177c16720713 registration_test_3 2015-12-19
84cefab64652460c82f46120d9098686 registration_test 3 2015-12-19
fdle40a7b31f4e8282a2a789135ed21d registration_test 3 2015-12-19

1 2 Next
Showing 1 through 10 out of 14.

5.6. RegistrationCode edit

After clicking through to a RegistrationCode you get to the edit page (there are no view pages):

Logged in as admin (Logout)

Spring Security Management Console

Edit RegistrationCode

Username registration_test_1

Token eBlble53648a47e6aef31a937154¢7ch
Date Created 2015-12-19

Update Delete

You can update the username or token attribute or delete the RegistrationCode.

Since instances are created during the "User Registration" and "Forgot Password" workflows, there
is no functionality in this plugin to create new instances.

15

Chapter 6. Forgot Password

Like the Registration workflow, the Forgot Password workflow is expected to be user-facing. So it’s
not available in the admin menu like the User, Role, and other backend functionality - you’ll need to
expose them to your users.

One way to do this is to replace the default login.gsp that’s provided by the Spring Security Core
plugin with this plugin’s version. You can do this by running grails s2ui-override auth - see the
section on Customization for more details. If you do this your users will have links to both
workflows from the login screen:

Member sign in

Llsername: ﬂ]

Password:

M Remember me | Forgot password?

Register as new User Log in

6.1. Forgot Password

Navigate to /register/forgotPassword:

Forgot Password

Enter your username and we'll send a link
to reset your password to the address we
have for your account.,

Lsername

Reset my password

After entering a valid username an email will be sent and youw’ll see a success screen:

16

Forgot Password

Your password reset email was sent - check your
mail!

Click on the link in the email:

« Backto InboX | Archive Report spam = Delete Moveto v | Labels w Mare actions »

Password Reset 1nbox |x

@ssssggmail.com show details 12:04 AM (1 minute ago) <~ Reply | ¥

Hitestuser,
You (or someone pretending to be you) requested that your password he reset,
[fyou didnt make this request then ignore the email; no changes have heen made.

[fyou did make the request, then click here to reset your password.

Reply Forward

and you’ll open the reset password form:

Reset Password

Enter your new password

Password ﬂ]

Fassword (again) |

Update my password

After entering a valid password you’ll finalize the process, which involves storing the new

17

password hashed in the user table and pre-authenticating, then redirecting to the configured
destination:

€2 GRAILS

@ Your password was successfully changed

Logged in as testuser (Logout)

6.2. Configuration

The post-reset destination url is configurable in grails-app/conf/application.groovy using the
postResetUr1 attribute:

grails.plugin.springsecurity.ui.forgotPassword.postResetUrl = '/reset’

If you don’t specify a value then the defaultTargetUr1l value will be used, which is '/' by default.

You can customize the subject, body, and from address of the reset email by overriding the default
values in grails-app/conf/application.groovy, for example:

grails.plugin.springsecurity.ui.forgotPassword.emailBody
grails.plugin.springsecurity.ui.forgotPassword.emailFrom
grails.plugin.springsecurity.ui.forgotPassword. ema115ubject

The emailBody property should be a GString and will have the User domain class instance in scope
in the user variable, and the generated url to click to reset the password in the url variable.

6.3. Mail configuration

By default the plugin uses the Mail plugin to send emails, but only if it installed. This is configurable
by registering your own MailStrategy implementation - see [the section on
configuration | guide:customization] for more information. The plugin assumes that the Mail plugin
and an SMTP server are already configured.

6.4. Notes

Like the registration code, consider this workflow as starter code. Run grails s2ui-override
register to copy the registration controller and GSPs into your application to be customized.

18

http://grails.org/plugin/mail

i

RegisterController and its GSPs assume that your User domain class has an email
field.

19

Chapter 7. ACL Management

ACL management should be done using the API exposed by AclService and AclUtilService. Both
services have a much more intuitive and convenient high-level approach to managing ACLs, ACEs,
etc. The functionality in this plugin is to provide a CRUD interface for fine-grained ACL
management.

The ACL menu is only available if the ACL plugin is installed.

7.1. AclClass Management

The default action for the AclClass controller is search. By default only the standard fields are
available but this is customizable with the s2ui-override script - see the Customization section for
details.

The className field has an Ajax autocomplete to assist in finding instances. Leave the field empty to
return all instances.

Spring Security Management Console Logged in as admin (Logout)

AclClass Search

Class Name:

Search

Searching is case-insensitive and the search string can appear anywhere in the field. Results are
shown paginated in groups of 10 and you can click on the className column header to sort the
results by that field:

Spring Security Management Console Logged in as admin (Logout)

AclClass Search

Class Mame: ﬂ]

Search

com.burtbeckwith.testapp.domain.Report

Showing 1 through 1 out of 1.

7.1.1. AclClass Edit

After clicking through an AclClass you get to the edit page (there are no view pages):

20

http://grails.org/plugin/spring-security-acl

_

Spring Security Management Console Logged in as admin (Logout)

‘ Edit AclClass ‘

Class Name |.corn.burtbeckwith.testapp.domain.Report
Wiew Associated OIDs

View Associated ACL Entries

Update Delete

You can update the name, and delete the instance if there aren’t any associated AclObjectIdentity
or AclEntry instances - by default there is no support for cascading.

You can also see the associated Acl0bjectIdentity instances (OIDs) or AclEntry instances.

7.1.2. AclClass Create

You can create new instances by going to /aclClass/create or by clicking the Create action in the
(lass menu under ACL.

_

Spring Security Management Console Logged in as admin (Logout)

‘ Create AclClass ‘

Class Name ﬂ]

Create

7.2. AclSid Management

The default action for the AclSid controller is search. By default only the standard fields are
available but this is customizable with the s2ui-override script - see the Customization section for
details.

The sid field has an Ajax autocomplete to assist in finding instances. Leave the field empty and
principal set to Either to return all instances.

21

Users Roles Registration Code ACL Security Info

Spring Security Management Console

Logged in as admin (Logout)

“

SID: (i J
True False Either
Principal: [=]]
Search

Results are shown paginated in groups of 10. The column headers are clickable and will sort the
results by that field:

Users Roles Registration Code ACL Security Info

Spring Security Management Console

Logged in as admin (Logout)

“

SID: (i J
True False Either
Principal: [(])
Search

user2z True

userl True

Showing 1 through 3 out of 3.

7.2.1. AclSid Edit

After clicking through to a sid you get to the edit page (there are no view pages):

Users Roles Registration Code ACL Security Info

Spring Security Management Console

Logged in as admin (Logout)

| — |

SID (admin| J

Principal ©
View Associated OIDs
View Associated ACL Entries

Update Delete

You can update the name and whether it’s a Principal sid or a Role sid, and delete the instance if
there aren’t any associated Acl0ObjectIdentity or AclEntry instances - by default there is no support

22

for cascading.

You can also see the associated Acl0bjectIdentity instances (OIDs) or AclEntry instances.

7.2.2. AclSid Create

You can create new instances by going to /ac1Sid/create or by clicking the Create action in the SID
menu under ACL.

Spring Security Management Console Logged in as admin (Logout)

Create AclSid

SID (i)

Frincipal (]

Create

7.3. AclObjectldentity Management

The default action for the AclObjectIdentity controller is search. By default only the standard fields
are available but this is customizable with the s2ui-override script - see the Customization section
for details.

Leave all fields at their default values to return all instances.

Spring Security Management Console Logged in as admin (Logout)
AclObjectIdentity Search
AclClass: [Al =
Object ID: (
owner: [Al)
Parent: (
True False Either
Entries Inheriting: [0O 4
Search
#

Results are shown paginated in groups of 10 and you can click on any header to sort by that field:

23

Users Roles Registration Code ACL Security Info

Spring Security Management Console Logged in as admin (Logout)
AclClass: [l ¢
Object ID: (
Owner:
Parent: [
True False Either
Entries Inheriting: [=] ™
‘ Search ‘
#

3 com.burtbeckwith.testapp.domain.Report 3 True admin

1 com.burtbeckwith.testapp.domain.Report 1 True userl

10 com.burtbeckwith.testapp.domain.Report 10 True admin

7 com.burtbeckwith.testapp.domain.Report 7 True admin

2 com.burtbeckwith.testapp.domain.Report 9 True admin

v[2][a][4][s][e][7][e] (o] 0] [wex]

Showing 1 through 10 out of 100,

7.3.1. AclObjectIdentity Edit

After clicking through to an AclObjectldentity you get to the edit page (there are no view pages):

Users Roles Registration Code ACL Security Info

Spring Security Management Console Logged in as admin (Logout)

AclClass | com, burtbeckwith.testapp, domain.Report % |
Object ID 3

Owner

Farent [

Entries Inheriting ™

View Associated ACL Entries

‘ Update H Delete ‘

You can update any of the attributes, and can delete the instance if there aren’t any associated
AclEntry instances - by default there is no support for cascading.

You can also see the associated AclEntry instances.

24

7.3.2. AclObjectIdentity Create

You can create new instances by going to /aclObjectIdentity/create or by clicking the Create action
in the 0ID menu under ACL.

Spring Security Management Console Logged in as admin (Logout)

‘ Create AclObjectIdentity ‘

AclClass (<)

object ID (

Owner (

Parent (

Entries Inheriting [

Create

7.4. AclEntry Management

The default action for the AclEntry controller is search. By default only the standard fields are
available but this is customizable with the s2ui-override script - see the Customization section for
details.

Leave all fields at their default values to return all instances.

Spring Security Management Console Logged in as admin (Logout)
‘ AclEntry Search ‘
AclobjectIdentity: |
Ace Order: (
SID: [al 2
Masl; (

True False Either
Granting: 0O O 4
Audit Success: =) O 4
Audit Failure: 0 0O 4]
Search
4

Results are shown paginated in groups of 10 and you can click on any header to sort by that field:

25

Users Roles Registration Code ACL Security Info

Spring Security Management Console Logged in as admin (Logout)

Aclobjectidentity: |)
Ace Order: ()
SID:
Mask: [

True False Either
Granting: ()] a ™
Audit Success: O O ™
Audit Failure: O O ™
‘ Search ‘

99 g 2 user2 BasePermission ..o Ww.=2] True False False
9 4 0 userl BassPemmissonlooc RS e Fase Fake
95 4 1 user2 BasePermission......ociiiiiieniien R=1] True False False
005 3 admin BasePermission...Au 18] Tre Fase Fase
96 4 2 admin BasePermission[....oooviviiiiiiin A....=16] True False False
933 2 admin BassPermissonloAuisi6] True Fase Fake
g1 3 o] userl BasePermission.....cooociiiiiiiiiin R=1] True False False
9231 user2 BasePermissionl ARSI Tre ke Fake
97 5 0 userl BasePermission[........ccoiiiiiiiiiiin R=1] True False False

v[2][s][e][s][e][7][s][s][0]. [28][next]

Showing 1 through 10 out of 175,

7.4.1. AclEntry Edit

After clicking through to an AclEntry you get to the edit page (there are no view pages):

Users Roles Registration Code ACL Security Info

Spring Security Management Console Logged in as admin (Logout)

AclobjectIdentity [5)

Ace Order [2 |
SID

Maslk [2

Granting

™
Audit Success O
Audit Failure O

‘ Update H Delete ‘

You can update any of the attributes or delete the AclEntry.

7.4.2. AclEntry Create

You can create new instances by going to /aclEntry/create or by clicking the Create action in the

26

Entry menu under ACL.

Users Roles Registration Code ACL Security Info

Spring Security Management Console Logged in as admin (Logout)

o emweadw

Aclobjectldentity | |

Ace Order

sSID

Maslk

Granting

Audit Success

[IIEIJI'?B?

Audit Failure

‘ Create ‘

27

Chapter 8. Persistent Cookie Management

Persistent cookies aren’t enabled by default - you must enable them by running the s2-create-
persistent-token script. See the Spring Security Core plugin documentation for details about this
feature.

The Persistent Logins menu is only shown if this feature is enabled.

8.1. Persistent logins search

The default action for the PersistentLogin controller is search. By default only the standard fields
(username, token, and series) are available but this is customizable with the s2ui-override script - see
the Customization section for details.

You can search by any combination of fields, and all fields have an Ajax autocomplete to assist in
finding instances. Leave all fields empty to return all instances.

_

Spring Security Management Console Logged in as admin (Logout)

‘ PersistentLogin Search ‘

Username: ﬂ]

Token: |’

Series: |‘

Search

Searching is case-insensitive and the search string can appear anywhere in the field. Results are
shown paginated in groups of 10 and you can click on any header to sort by that field:

_

Spring Security Management Console Logged in as admin (Logout)

‘ PersistentLogin Search ‘

Username: |admin

Token: |J

Series: |‘

Search
Sefes Usemame Token LastUsed ’
dWEAHU/Oue)GIEpoRMFIGQ==admin HQLCHTEwbuywP3RY /+zN6A== 07,/25/2010

Showing 1 through 1 out of 1.

https://grails-plugins.github.io/grails-spring-security-core/v3/index.html#rememberMeCookie

8.2. Persistent logins edit

After clicking through to an instance you get to the edit page (there are no view pages):

Spring Security Management Console Logged in as admin (Logout)

Edit PersistentLogin

Series dWEAHU,/0uelGIBpoRMFIGQ==

Username admin
Token HQECHTSwhuywP3RY [+zNGA==

Last Used |2010-07-25 17:21:32 EDT

Update Delete

You can update the token or lastUsed attribute or delete the instance.

8.3. Persistent logins creation

Since instances are created during authentication by the spring-security-core plugin, there is no
functionality in this plugin to create new instances.

29

Chapter 9. Security Configuration Ul

The Security Info menu has links for several pages that contain read-only views of much of the
Spring Security configuration:

| Security Configuration
*Mappings

Current Authentication

User Cache

Filter Chains

Logout Handlers

Voters

True False Authentication Praviders

Enabled: o Secure Channel Definition

Spring

Username:

Account Expired: .

Account Locked: » o L

9.1. Security Configuration

The Security Configuration menu item displays all security-related attributes in application.groovy.
The names omit the grails.plugin.springsecurity prefix:

Logged in as admin (Logout)

Spring Security Management Console

Show |10 v | entries Search:

Security Configuration

acl.active true
acl.authority.changeAclDetails ROLE_ADMIN
acl.authority.changeOwnership ROLE_ADMIN
acl.authority. modifyAuditingDetails ROLE_ADMIN
active true
adh.ajaxErrorPage /login/ajaxDenied
adh.errorPage /login/denied
adh.useForward true
afterInvocationManagerProviderNames [1
ajaxCheckClosure

Showing 1 to 10 of 161 entries Previous m 2 3 4 5 17 Next

9.2. Mappings

The Mappings menu item displays the current request mapping mode (Annotation, Requestmap, or
Static) and all current mappings:

30

Users Roles Persistent Logins Registration Code ACL Security Info

SecurityConfigType: Annotation

Spring Security Management Console

Mappings

Logged in as admin (Logout)

/

findex
findex.gsp
jassets/**

2 f15/**

/== [cssf**
/**/images/**
/== (favicon.ico
[register
/register/**
[registrationcode
[registrationcode/* *
/securityinfo
/securityinfo/**
flogin

flogin.*
flogin/**

/logout

flogout.*

[logout/=*

ConfigAttributes

permitAll
permitall
permitAll
permitAll
permitAll
permitAll
permitall
permitAll
permitAll
permitAll
permitAll
permitAll
permitAll
permitall
permitAll
permitAll
permitAll
permitAll
permitall
permitAll

9.3. Current Authentication

HTTP Method

all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all

The Current Authentication menu item displays your Authentication information, mostly for
reference to see what a typical one contains:

Users Roles Reguestmaps Persistent Logins Registration Code ACL Security Info

Spring Security Management Console

Current Authentication

Logged in as admin (Logout)

Mame Value

Authorities [ROLE_RUN_AS, ROLE_USER, ROLE_ADMIN, ROLE_SWITCH_USER]

Details

Sessionld: 659C5EEAED7F26774E7214E7FOD35D3D

org.springframewaork.security.web.authentication. WebAuthenticationDetails@fffed504: RemotelpAddress; 127.0.0.1;

grails.plugin.springsecurity.userdetails.GrailsUser@586034f: Username: admin; Password: [PROTECTED]; Enabled:
Principal true; AccountNonExpired: true; credentialsMonExpired: true; AccountNonLocked: true; Granted Authorities:
ROLE_ADMIN,ROLE_RUN_AS ROLE_SWITCH_USER,ROLE_USER

Name admin

9.4. User Cache

The User Cache menu item displays information about cached users if the feature is enabled (it is

disabled by default).

31

Users Roles Requestmaps Persistent Logins Registration Code ACL Security Info

L d drmin (L t
Spring Security Management Console ogged in as admin (Logout)
UserCache class: net.sf.ehcache.Cache
User Cache
Attribute Value
Size 1
Status STATUS_ALIVE
Name userCache
GUID 127.0.1.1-458656cf-0031-4216-8f6d-ee25a6438d98
Statistics

Cache Hits 1
In-memory Hits 2
On-disk Hits 0
Cache Misses <!
Object Count 1
Memory Store Object Count 1
Disk Store Object Count 0
Eviction Count 0

1 Cached User(s)

grails.plugin_springsecurity.userdetails.GrailsUser@ 586034f: Username: admin; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;

admin
credentialsNonExpired: true; AccountNonLocked: true; Granted Authorities: ROLE_ADMIN,ROLE_RUM_AS,ROLE_SWITCH_USER,ROLE_USER

9.5. Filter Chains

The Filter Chains menu item displays your configured Filter chains. It is possible to have multiple
URL patterns each with its own filter chain, for example when using HTTP Basic Auth for a web
service. By default since the 3.0.0 release the spring-security-core s2-quickstart script configures
empty filter chains for static assets to avoid unnecessary security checks (although of course if you
need to secure some or all of your static assets you should reconfigure these).

Users Roles Requestmaps Persistent Logins Registration Code ACL Security Info |

. - L di dmin (L t
Spring Security Management Console 0gged in as admin (Logout)
Filter Chains
Ant [pattern='/assets/**'] none
Ant [pattern="/**/js/**'] none
Ant [pattern="/**/css/**'] none

Ant [pattern='/**/images/**'] none
Ant [pattern="'/**/favicon.ico'] none

grails.plugin.springsecurity.web.SecurityRequestHolderFilter
org.springframework.security.web.access.channel.ChannelProcessingFilter
org.springframework.security.web.context.SecurityContextPersistenceFilter
grails.plugin.springsecurity.web.authentication.logout. MutableLogoutFilter
grails.plugin.springsecurity.web.authentication. GrailsUsernamePasswordAuthenticationFilter
Ant [pattern="/*%"] org.springframework.security.web.servletapi.SecurityContextHolderAwareRequestFilter
grails.plugin.springsecurity.web.filter.GrailsRememberMeAuthenticationFilter
grails.plugin.springsecurity. web.filter.GrailsAnonymousAuthenticationFilter
org.springframework.security.web.access.ExceptionTranslationFilter
org.springframework.security.web.access.intercept.FilterSecuritylnterceptor
org.springframework.security.web.authentication.switchuser.SwitchUserFilter

9.6. Logout Handlers

The Logout Handlers menu item displays your registered LogoutHandlers. Typically there will be just

the ones shown here, but you can register your own custom implementations, or a plugin might
contribute more:

Users Roles Requestmaps Persistent Logins Registration Code ACL Security Info |

: i Logged in as admin (Logout
Spring Security Management Console ogged in as admin (Logout)

Logout Handlers

Class Name

org.springframewaork.security.web.authentication.rememberme.PersistentTokenBasedRememberMeServices

org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler

9.7. Voters

The Voters menu item displays your registered AccessDecisionVoters. Typically there will be just the

ones shown here, but you can register your own custom implementations, or a plugin might
contribute more:

Users Roles Reguestmaps Persistent Logins Registration Code ACL Security Info |

Spring Security Management Console Logged in as admin (Logout)

Voters

Class Name

org.springframework.security .access.vote. AuthenticatedVoter
org.springframewaork.security.access.vote.RoleHierarchyVoter
grails.plugin.springsecurity.web.access.expression. WebExpressionVoter

grails.plugin.springsecurity.access.vote.ClosureVoter

9.8. Authentication Providers

The Authentication Providers menu item displays your registered AuthenticationProviders.
Typically there will be just the ones shown here, but you can register your own custom
implementations, or a plugin (e.g. LDAP) might contribute more:

Users Roles Reguestmaps Persistent Logins Registration Code ACL Security Info |

Spring Security Management Console Logged in as admin (Logout)

Authentication Providers

Class Name

org.springframewaork.security.authentication.dao.DacAuthenticationProvider
grails.plugin.springsecurity.authentication.GrailsAnonymousAuthenticationProvider

org.springframewaork.security.authentication.RememberMeAuthenticationProvider

33

9.9. Secure Channel Definition

The Secure Channel Definition menu item displays your registered channel security mappings.

Users Roles Persistent Logins Registration Code ACL Security Info

:) Logged in as admin (Logout
Spring Security Management Console 0gged in as admin (Logout)

Secure Channel Definition

Ant [pattern='/secure/stuff/**'] [REQUIRES_SECURE_CHANNEL]
Ant [pattern="'/insecure/stuff/**'] [REQUIRES_IMSECURE_CHANNEL]
Ant [pattern="/**'] [ANY_CHANNEL]

34

Chapter 10. Customization

Most aspects of the plugin are configurable.

10.1. s2ui-override script

The plugin’s controllers and GSPs are easily overridden using the s2ui-override script. The general
syntax for running the script is

grails s2ui-override <type> <controller-package>

The script will copy an empty controller that extends the corresponding plugin controller into your
application so you can override individual actions and methods as needed. It also copies the
controller’s GSPs. The exceptions are 'auth’ and 'layout’ which only copy GSPs.

The files copied for each type are summarized here:

* aclclass
« controller/AclClassController.groovy
« views/aclClass/create.gsp
« views/aclClass/edit.gsp

« views/aclClass/search.gsp

* aclentry
« controller/AclEntryController.groovy
« views/aclEntry/create.gsp
« views/aclEntry/edit.gsp

« views/aclEntry/search.gsp

* aclobjectidentity
« controller/AclObjectIdentityController.groovy
« views/aclObjectIdentity/create.gsp
« views/aclObjectIdentity/edit.gsp
« views/aclObjectIdentity/search.gsp

* aclsid
« controller/AclSidController.groovy
« views/aclSid/create.gsp
« views/aclSid/edit.gsp

« views/aclSid/search.gsp

* auth
« views/login/auth.gsp

* layout

35

o views/layouts/springSecurityUI.gsp

« views/includes/_ajaxLogin.gsp

* persistentlogin
« controller/PersistentLoginController.groovy
« views/persistentlLogin/edit.gsp

« views/persistentlLogin/search.gsp

* register
« controller/RegisterController.groovy
« views/register/forgotPassword.gsp
« views/register/register.gsp

o views/register/resetPassword.gsp

* registrationcode
« controller/RegistrationCodeController.groovy
« views/registrationCode/edit.gsp

« views/registrationCode/search.gsp

* requestmap
« controller/RequestmapController.groovy
o Vviews/requestmap/create.gsp
o views/requestmap/edit.gsp

o views/requestmap/search.gsp

e role

« controller/RoleController.groovy
« views/role/create.gsp
« views/role/edit.gsp

« views/role/search.gsp

* securityinfo
« controller/SecurityInfoController.groovy
« views/securityInfo/config.gsp
« views/securityInfo/currentAuth.gsp
« views/securityInfo/filterChains.gsp
« views/securityInfo/logoutHandlers.gsp
« views/securityInfo/mappings.gsp
« views/securityInfo/providers.gsp
« views/securityInfo/secureChannel.gsp
« views/securityInfo/usercache.gsp

« views/securityInfo/voters.gsp

* user

o controller/UserController.groovy

36

« views/user/create.gsp
o views/user/edit.gsp

o views/user/search.gsp

10.2. I18N

All of the plugin’s displayed strings are localized and stored in the plugin’s grails-
app/i18n/messages.spring-security-ui.properties file. You can override any of these values by
putting an override in your application’s grails-app/i18n/messages.properties file.

10.3. application.groovy attributes

There are a few configuration options specified in DefaultUiSecurityConfig.groovy that can be
overridden in your application’s grails-app/conf/application.groovy

10.3.1. Registration attributes

These settings are used in the registration workflow; see the User Registration section for more
details:

* grails.plugin.springsecurity.ui.register.defaultRoleNames

* grails.plugin.springsecurity.ui.register.emailBody

* grails.plugin.springsecurity.ui.register.emailFrom

* grails.plugin.springsecurity.ui.register.emailSubject

* grails.plugin.springsecurity.ui.register.postRegisterUrl

10.3.2. Forgot Password attributes

These settings are used in the forgot-password workflow; see the Forgot Password section for more
details:

* grails.plugin.springsecurity.ui.forgotPassword.emailBody

* grails.plugin.springsecurity.ui.forgotPassword.emailFrom

» grails.plugin.springsecurity.ui.forgotPassword.emailSubject

* grails.plugin.springsecurity.ui.forgotPassword.postResetUrl

10.3.3. GSP layout attributes

The layout attribute in the GSPs is configurable. If this is the only change you want to make in some
or all of the GSPs then you can avoid copying the GSPs into your application just to make this
change.

The default value for the registration workflow GSPs (forgotPassword.gsp, register.gsp, and
resetPassword.gsp) is “register” and the default for the rest is “springSecurityUI”. These values can
be overridden with the grails.plugin.springsecurity.ui.gsp.layoutRegister and

37

grails.plugin.springsecurity.ui.gsp.layoutUi settings.

10.3.4. Miscellaneous attributes

The role name required to be able to run as another user defaults to ROLE_SWITCH_USER but you can
override this name with the grails.plugin.springsecurity.ui.switchUserRoleName setting.

10.4. CSS and JavaScript

The plugin uses the Asset Pipeline plugin to manage its resources. This makes it very easy to
provide your own version of some or all of the static resources since asset-pipeline will always use
a file in the application’s assets directory instead of a plugin’s if it exists.

Instead of depending on either the jQuery or jQuery Ul plugins, this plugin includes its own copy of
jquery.js, jquery-ui.js, and jquery-ui.css. Note that the versions are not hard-coded, but instead they
take advantage of the feature in asset-pipeline where you can embed Groovy code in a file to
specify the name and path.

The layouts use grails-app/assets/javascripts/jquery.js, which contains this:

//=require jquery/jquery-
${grails.plugin.springsecurity.ui.Constants.JQUERY_VERSION}.js

This resolves to grails-app/assets/javascripts/jquery/jquery-2.1.4.js, and to use your own
version, either use the same approach in a file called jquery.js or rename your file to jquery.js.

Likewise for jQuery UI, the JavaScript file is grails-app/assets/javascripts/jquery-ui.js, which
contains this

//=require jquery-ui/jquery-ui-
${grails.plugin.springsecurity.ui.Constants.JQUERY_UI_VERSION}.js

and the CSS file grails-app/assets/stylesheets/jquery-ui.css, which contains

/*

*= require smoothness/jquery-ui-
${grails.plugin.springsecurity.ui.Constants.JQUERY_UI_VERSION}.css
*/

The JavaScript file resolves to grails-app/assets/javascripts/jquery-ui/jquery-ui-
1.10.3.custom. js, and to use your own version, either use the same approach in a file called jquery-
ui.js or rename your file to jquery-ui.js.

The CSS file resolves to grails-app/assets/stylesheets/smoothness/jquery-ui-1.10.3.custom.css, and
to use your own version, either use the same approach in a file called jquery-ui.js or rename your
file to jquery-ui.js.

38

http://grails.org/plugin/asset-pipeline

Use your own jquery-ui.js and/or jquery-ui.css to override the plugin’s.

The springSecurityUl.gsp layout includes grails-app/assets/stylesheets/spring-security-ui.css,
which has no style declarations and only includes other CSS files:

/*

*= require reset.css

*= require jquery-ui.css

*= require jquery.jdMenu.css

*= require jquery.jdMenu.slate.css

*= require jquery.jgrowl.css

*= require spring-security-ui-common.css

and grails-app/assets/javascripts/spring-security-ui.js which has no JavaScript code and only
includes other JavaScript files:

//= require jquery.js

//= require jquery-ui.js

//= require jquery/jquery.jgrowl.js

//= require jquery/jquery.positionBy.js

//= require jquery/jquery.bgiframe.js

//= require jquery/jquery.jdMenu.js

//= require jquery/jquery.form.js

//= require spring-security-ui-ajaxLogin.js

The register.gsp layout layout includes grails-app/assets/stylesheets/spring-security-ui-
register.css, which has no style declarations and only includes other CSS files:

*= require reset.css

*= require jquery-ui.css

*= require jquery.jgrowl.css

*= require spring-security-ui-common.css

and grails-app/assets/javascripts/spring-security-ui-register.js which has no JavaScript code
and only includes other JavaScript files:

//= require jquery.js
//= require jquery-ui.js
//= require jquery/jquery.jgrowl.js

The remaining JavaScript files are

* grails-app/assets/javascripts/spring-security-ui-ajaxLogin.js

39

* grails-app/assets/javascripts/jquery/jquery.bgiframe.js
* grails-app/assets/javascripts/jquery/jquery.dataTables.js
* grails-app/assets/javascripts/jquery/jquery.form.js

* grails-app/assets/javascripts/jquery/jquery.jdMenu.js

* grails-app/assets/javascripts/jquery/jquery.jgrowl.js

* grails-app/assets/javascripts/jquery/jquery.positionBy.js
and the remaining CSS files are

* grails-app/assets/stylesheets/jquery.dataTables.css

* grails-app/assets/stylesheets/jquery.jdMenu.css

* grails-app/assets/stylesheets/jquery.,jdMenu.slate.css

* grails-app/assets/stylesheets/jquery.jgrowl.css

* grails-app/assets/stylesheets/reset.css

* grails-app/assets/stylesheets/spring-security-ui-auth.css

* grails-app/assets/stylesheets/spring-security-ui-common.css

10.5. Password Hashing

In recent versions of the Spring Security Core plugin, the “User” domain class is generated by the
s2-quickstart script with code to automatically hash the password. This makes the code simpler
(for example in controllers where you create users or update user passwords) but older generated
classes don’t have this generated code. This presents a problem for plugins like this one since it’s
not possible to reliably determine if the domain class hashes the password or if you use the older
approach of explicitly calling springSecurityService.encodePassword().

The unfortunate consequence of mixing a newer domain class that does password hashing with
controllers that call springSecurityService.encodePassword() is the the passwords get double-
hashed, and users aren’t able to login. So to get around this there’s a configuration option you can
set to tell this plugin’s controllers whether to hash or not:
grails.plugin.springsecurity.ui.encodePassword.

This option defaults to false, so if you have an older domain class that doesn’t handle hashing just
enable this plugin’s hashing:

grails.plugin.springsecurity.ui.encodePassword = true

h4. Strategy classes

The plugin’s SpringSecurityUiService implements several “strategy” interfaces to make it possible to
override its functionality in a more fine-grained way.

These are defined by interfaces in the grails.plugin.springsecurity.ui.strategy package:

40

o AclStrategy

o ErrorsStrategy

o MailStrategy

« PersistentloginStrategy
o PropertiesStrategy

o QueryStrategy

« RegistrationCodeStrategy
« RequestmapStrategy

« RoleStrategy

o UserStrategy

The controllers, taglib, and even the service never call strategy methods directly on the service,
only via a strategy interface.

Each interface has a default implementation, e.g. DefaultAclStrateqgy, DefaultErrorsStrategy, etc,
and these simply delegate to SpringSecurityUiService (except for MailStrategy, which has
MailPluginMailStrategy as its default implementation which uses the Mail plugin to send emails).
Each of the default implementations is registered as a Spring bean:

« UiAclStrategy

o UiErrorsStrategy

« UiMailStrategy

« UiPersistentloginStrategy
« UiPropertiesStrategy

« UiQueryStrategy

« UiRegistrationCodeStrategy
« UiRequestmapStrategy

« UiRoleStrategy

« UilserStrategy

To override the functionality defined in one of the strategy interfaces, register your own
implementation of the interface in your application’s grails-app/conf/spring/resources.groovy, e.g.

import com.myapp.MyRequestmapStrategy

beans = {
uiRequestmapStrategy(MyRequestmapStrategy)

and yours will be used instead.

10.6. Password Verification

By default the registration controller has rather strict requirements for valid passwords; they must
be between 8 and 64 characters and must include at least one uppercase letter, at least one number,
and at least one symbol from “!@#$%”&”. You can customize these rules with these

41

application.groovy attributes:

Property Default Value

grails.plugin.springsecurity.ui.password.minLen 8
gth

grails.plugin.springsecurity.ui.password.maxLen 64
gth

grails.plugin.springsecurity.ui.password.validati "A.*(?=*\\d)(?=.*[a-zA-Z])(?=*[! @#$%" &]).*$"
onRegex

42

Chapter 11. Scripts

11.1. s2ui-override

Purpose

Generates controllers that extend the plugin’s controllers and copies their GSPs to your application
for overriding of functionality.

The general format is:
grails s2ui-override <type> [controllerPackage]

The script will copy an empty controller that extends the corresponding plugin controller into your
application so you can override individual actions and methods as needed. It also copies the
controller’s GSPs. The exceptions are when type is 'auth’ or 'layout’ which only copy GSPs.

See the Customization section for more details.

43

	Spring Security UI Plugin - Reference Documentation
	Table of Contents
	Chapter 1. Introduction to the Spring Security UI Plugin
	1.1. Release History

	Chapter 2. User Management
	2.1. User search
	2.2. User edit
	2.3. User creation

	Chapter 3. Role Management
	3.1. Role search
	3.2. Role edit
	3.3. Role creation

	Chapter 4. Requestmap Management
	4.1. Requestmap search
	4.2. Requestmap edit
	4.3. Requestmap creation

	Chapter 5. User Registration
	5.1. Registration
	5.2. Configuration
	5.3. Mail configuration
	5.4. Notes
	5.5. RegistrationCode search
	5.6. RegistrationCode edit

	Chapter 6. Forgot Password
	6.1. Forgot Password
	6.2. Configuration
	6.3. Mail configuration
	6.4. Notes

	Chapter 7. ACL Management
	7.1. AclClass Management
	7.2. AclSid Management
	7.3. AclObjectIdentity Management
	7.4. AclEntry Management

	Chapter 8. Persistent Cookie Management
	8.1. Persistent logins search
	8.2. Persistent logins edit
	8.3. Persistent logins creation

	Chapter 9. Security Configuration UI
	9.1. Security Configuration
	9.2. Mappings
	9.3. Current Authentication
	9.4. User Cache
	9.5. Filter Chains
	9.6. Logout Handlers
	9.7. Voters
	9.8. Authentication Providers
	9.9. Secure Channel Definition

	Chapter 10. Customization
	10.1. s2ui-override script
	10.2. I18N
	10.3. application.groovy attributes
	10.4. CSS and JavaScript
	10.5. Password Hashing
	10.6. Password Verification

	Chapter 11. Scripts
	11.1. s2ui-override

